前几天有人在公众号留言,提到一个可转债的思路,想看下转债和正股的涨跌有没有关联。如果转债的走势和正股一致,而且滞后于正股,那我们就可以筛选正股涨的多,而转债还没涨起来的来捡漏。
为了验证这个思路是否靠谱,昨晚花了两小时,写了个爬虫程序,取可转债和正股涨跌幅信息。粗略看了一下,好像转债和正股的涨跌关系不大。这里把代码贴出来,感兴趣的可以深入研究,研究出什么门道记得告知我。
数据来源:东方财富(https://data.eastmoney.com/kzz/)
代码示例
1、爬取列表页
import requests import json import re def get_list(): list_url = 'https://datacenter-web.eastmoney.com/api/data/v1/get?sortColumns=PUBLIC_START_DATE&sortTypes=-1&pageSize=50&pageNumber={num}&reportName=RPT_BOND_CB_LIST&columns=ALL"eColumns=f2~01~CONVERT_STOCK_CODE~CONVERT_STOCK_PRICE%2Cf235~10~SECURITY_CODE~TRANSFER_PRICE%2Cf236~10~SECURITY_CODE~TRANSFER_VALUE%2Cf2~10~SECURITY_CODE~CURRENT_BOND_PRICE%2Cf237~10~SECURITY_CODE~TRANSFER_PREMIUM_RATIO%2Cf239~10~SECURITY_CODE~RESALE_TRIG_PRICE%2Cf240~10~SECURITY_CODE~REDEEM_TRIG_PRICE%2Cf23~01~CONVERT_STOCK_CODE~PBV_RATIO&source=WEB&client=WEB' i = 1 while True: response = requests.get(list_url.format(num=i)) response_dict = json.loads(response.text) if not response_dict['success']: break data = response_dict['result']['data'] parse_list(data) print('>> page:', i, 'ok') i += 1 def to_txt(line): with open('./secu.csv', 'a') as f: f.write(line) if __name__ == '__main__': get_list()
2、解析列表数据
def parse_list(data): for row in data: try: secu_name = row['SECURITY_NAME_ABBR'] secu_code = row['SECUCODE'] stock_code = row['CONVERT_STOCK_CODE'] stock_name = row['SECURITY_SHORT_NAME'] secu_detail = get_secu_detail(secu_code) if not secu_detail: continue stock_detail = get_stock_detail(stock_code) to_txt(','.join([secu_name, secu_code[:6], *list(map(str, secu_detail)), \ stock_name, stock_code, *list(map(str, stock_detail)), \ str(round(stock_detail[2] - secu_detail[2],3))]) + '\n') except: print(secu_code)
3、爬取转债价格
def get_secu_detail(code): # 获取带市场前缀的code code = (code[-2:] + code[:6]).lower() url = f'https://quote.eastmoney.com/bond/{code}.html' html = requests.get(url).text rex = re.search('quotecode":"(.*?)"', html) m_code = rex.group(1) # 获取接口内容 api_url = 'https://push2.eastmoney.com/api/qt/stock/details/get?pos=-12&secid={code}&fields1=f1,f2,f3,f4&fields2=f51,f52,f53,f54,f55&fltt=2' response = requests.get(api_url.format(code=m_code)) response_dict = json.loads(response.text) if (not response_dict) or (not response_dict['data']): return None pre_price = float(response_dict['data']['prePrice']) details = response_dict['data']['details'] if len(details): cur_price = float(details[-1].split(',')[1]) pct_chg = round((cur_price - pre_price) * 100 / pre_price, 3) return pre_price, cur_price, pct_chg
4、解析股票价格
def get_stock_detail(code): # 获取带市场前缀的code url = f'https://data.eastmoney.com/stockdata/{code}.html' html = requests.get(url).text rex = re.search('hqCode":"(.*?)"', html) m_code = rex.group(1) # 获取接口内容 api_url = 'https://push2.eastmoney.com/api/qt/stock/get?fltt=2&invt=2&secid={code}&fields=f57,f58,f107,f43,f169,f170,f171,f47,f48,f60,f46,f44,f45,f168,f50,f162,f177' response = requests.get(api_url.format(code=m_code)) response_dict = json.loads(response.text) if (not response_dict) or (not response_dict['data']): return None pre_price = float(response_dict['data']['f60']) cur_price = float(response_dict['data']['f43']) pct_chg = round((cur_price - pre_price) * 100 / pre_price, 3) return pre_price, cur_price, pct_chg
本文为 陈华 原创,欢迎转载,但请注明出处:http://edu.ichenhua.cn/read/323
- 上一篇:
- 澳大利亚天气预测特征工程之城市气候区域