前面介绍完 CasRel模型结构,接下来我们看一下数据集,然后做一个简单的预处理。因为是用 Bert 做分词,就省去了自己建词表的过程,只需要把关系解析出来,供后续流程使用,就可以了。
编程学院分类,是在编程过程中,记录开发心得体会的板块。目前主要涉及PHP、Python、Linux、前端等内容。
前面介绍完 CasRel模型结构,接下来我们看一下数据集,然后做一个简单的预处理。因为是用 Bert 做分词,就省去了自己建词表的过程,只需要把关系解析出来,供后续流程使用,就可以了。
上节课,给大家整体介绍了项目要做的事情,就是从一段文本当中,找到主体、客体、和关系的三元组组合,因为 CasRel 这个模型,设计思路不是很常规,示意图的细节也容易混淆,所以我们单独用一节课时间,来拆解一下这个模型。
关系抽取,是信息检索、智能问答、智能对话等人工智能应用的重要基础,一直受到业界的广泛关注。目前NLP领域的主流研究方向,也在向知识图谱偏移。因为多音字、多义词,加上语境变化,单个字或者词的表征一定是片面的,发现实体之间的联系,往往比自身特征更重要。
上节课,我们做了一个简单的数据预处理,通过观察直方图,定义好了文本的长度参数。现在,假设大家已经看了、并且掌握了前面 Huggingface 的内容,我们接着往下讲自定义 Dataset 和 Bert 分词的内容。
上节课,给大家介绍了 TextCNN 的模型结构,这节课就正式进入代码部分。本节课有两个任务,一是导入数据集,二是要统计待分类的文本长度,因为 TextCNN 在卷积之后,要做批量最大池化操作,所以要求文本长度一致,不够的填充PAD,太长的要进行截取。
从本节课开始,我将带大家来完成一个《Bert+TextCNN新闻文本分类项目》。文本分类是自然语言处理最基础,也是最重要的任务之一,非常适合作为NLP入门的第一个项目。
给你一个长度为 n 的整数数组 nums 和 一个目标值 target。请你从 nums 中选出三个整数,使它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在恰好一个解。
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。注意:答案中不可以包含重复的三元组。
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。给你一个整数,将其转为罗马数字。
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
请你来实现一个 myAtoi(string s) 函数,使其能将字符串转换成一个 32 位有符号整数(类似 C/C++ 中的 atoi 函数)。
给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。如果反转后整数超过 32 位的有符号整数的范围 [−2^31, 2^31 − 1] ,就返回 0。假设环境不允许存储 64 位整数(有符号或无符号)。
将一个给定字符串 s 根据给定的行数 numRows ,以从上往下、从左到右进行 Z 字形排列。
给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。说明: 叶子节点是指没有子节点的节点。
给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。
给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。
上节课我们用一个中文句子,给大家演示了 Bert 预训练模型的基本用法。但有些场景下,文本内容可能是中英文混杂的,但目前还没有支持多语言的预训练模型。直接用中文模型进行编码,英文部分会变成[UNK]标记,从而导致BertTokenizer分词不可逆问题。
编写一个 SQL 查询,来查找与之前(昨天的)日期相比温度更高的所有日期的 id 。返回结果 不要求顺序 。
编写一个 SQL 删除语句来 删除 所有重复的电子邮件,只保留一个id最小的唯一电子邮件。以 任意顺序 返回结果表。 (注意: 仅需要写删除语句,将自动对剩余结果进行查询)
上一节介绍了transformers的安装,和预训练模型的加载方法,本节我们结合一个例子,来介绍预训练模型的使用过程。使用 BERT 这个预训练模型,主要分为两步:BertTokenizer 进行分词,BertModel 编码。